当前位置: 首页 > news >正文

网站的登陆注册页面怎么做seo职位招聘

网站的登陆注册页面怎么做,seo职位招聘,厦门市建设局网站,怎么建设一个公司网站机器学习简介 机器学习简介机器学习例子机器学习分类有监督学习有监督学习的应用 无监督学习 机器学习常见概念数据集k折交叉验证过拟合欠拟合评价指标 机器学习简介 机器学习例子 问题: 2,4,6,8,?&#…

机器学习简介

  • 机器学习简介
    • 机器学习例子
    • 机器学习分类
      • 有监督学习
        • 有监督学习的应用
      • 无监督学习
    • 机器学习常见概念
      • 数据集
      • k折交叉验证
      • 过拟合
      • 欠拟合
      • 评价指标

机器学习简介

机器学习例子

问题: 2,4,6,8,?,?已知前面的数,求后面的数是什么?
机器学习解决方案 从前四个数,即前4个示例,找到一个函数(模型,公式)满足前四个数的规律;后面的数则使用这个函数去推理得到。

1.找到一个函数y=f(x)使得将其满足上面的已知数据
2.得到这个函数,去预测其他的未知的数
上面的函数为:y=2*x

引申:上面是简单的数字,这个数字可以变成复杂的向量、矩阵;这个函数也可以是多个公司拼接,从而就可以符合更加复杂任务的规律。其中2就是我们在数字中找到的规律,y=2x就是我们训练出来的模型。

机器学习概念: 通过观察有限数量的样本,去找到一个规律或者公式,满足已知样板的x、y的关系的过程。

数据的重要性: 上面的案例中,如果只给了2,4两个已知的数,那么规律就有可能是:y=2x;也可以是y=x^2 ;所以规律正确与数据有很大的关系。

困难点: 上面的规律是非常简单的,但是对于复杂的事情,我们人都很难去梳理出规律,所以我们希望把数据交给机器,让机器把规律找出来 。

机器学习分类

有监督学习

核心目标: 建立一个模型(函数),来描述输入(x)与输出(y)之间的关系;从而使新的输入来临时时,我们可以预测输出。
要求:需要一定输入与输出有关联关系并且能够数值化表示的训练样本。
在这里插入图片描述

有监督学习的应用

任务类型1:文本分类任务

输入:文本
输出:类别
关系:文本的内容决定着文本的类别

比如判断一句话是不是曹贼所说

任务类型2:机器翻译

输入:A语种文本
输出:B语种文本
关系:A语种表达的意思,在B语种中有对应得意思

比如太阳,英文就是son

无监督学习

**释义:**给与机器得数据是没有标注信息得,简单理解就是只有输入,这种情况也可以让机器进行一些分析
应用场景:聚类、降维、找特征值等等
聚类
**释义:**比如将一系列水果,按照大小、颜色、口味对应不同得数字,把水果转换为向量数子表示,这个时候通过空间向量得计算,可以判断那些向量比较接近,那么按照一定得算法就可以将它们分类,虽然我们不清楚分得是什么类
在这里插入图片描述
降维
释义: 我们在整理了1000个人的各项数据,包括用100个维度去表示他们各自的信息:身高、是否结婚、工作、胖瘦、年龄、手长、腰围等;但是对于我们某一个任务来说,某些维度的信息没有用,比如是否结婚不关注,那么我们通过一定的算法,将其中某些不用的维度去除掉,降低的数据的复杂性,这就是降维。
在这里插入图片描述

机器学习常见概念

数据集

1.训练集
释义:用于模型训练的数据集合
举例: 相当于一个孩子从白纸到成人需要的教训,只是这个教训在这里是提取准备好的

2. 验证集
释义:对于每一种任务一般都有多种算法可以选择,一般会使用验证集用于对比不同算法的效果差异
举例: 培养孩子时,我们需要进行中考、高考,测试这个孩子在某方面的天赋和培养效果,这里的验证集就是这个意思。

3.测试集
释义:最终用来评判算法模型效果的数据集合
举例: 相当于孩子成年了,放到社会上去经历毒打,如果表现得不错,就说明这个号成了,表现差,就重新练一个。

k折交叉验证

释义:初始采样分割成k个子样本,一个单独的子样本本保留作为验证模型的数据,其他的k-1个样本用来训练,交叉重复k次,每个子样本验证一次,平均k次的结果。就是需要训练K次。

过拟合

**释义:**模型失去泛化能力,如果模型在训练集和验证集上都有很好的表现,但是在测试集上表现很差,一般认为发生过拟合。
举例: 高考笔试成绩很好,读书的任务完成得很棒,但是出了社会实际做事不行,是书呆子,就是过拟合。

欠拟合

释义: 模型没能建立起合理的输入输出之间的映射,当输入训练集中的样本时,预测结果和标注结果依然相差很大。
举例 平时就学不进去,别说高考,从小学到初高中,成绩都很差,就是欠拟合,这个时候就看是不是没认真学习,学习方法不对;还是这个娃就是蠢,那么就重新生一个,看看有没有天赋。

评价指标

释义: 为了评价算法效果好坏,需要找到一种评价模型的计算指标例如:准确率、召回率、F1值、TopK、BLEU等
举例: 学生的评价,德智体美劳,高考成绩等

http://www.qdjiajiao.com/news/9622.html

相关文章:

  • 温州网站建设专业的公司百度推广怎么收费的
  • 做正版电子书下载网站网络营销的常用方法
  • 群晖 做网站 Java郑州网站网页设计
  • 学校网站建设维护百度关键词优化工具
  • 开化网站建设国内新闻最新消息今天简短
  • 公司要招个做网站的人企业网站优化外包
  • 怎么做免费的产品图片网站定制网站和模板建站
  • 怎么样做网站爬虫关键词排名优化技巧
  • 做app做网站从何学起搜索引擎优化服务公司哪家好
  • 让路由器做网站服务器企业网站的搜索引擎推广与优化
  • 1688成品网站源码windows优化大师值得买吗
  • 陕西网站开发联系电话百度大数据官网入口
  • 织梦怎么在本地编辑多个网站查权重
  • 国外哪些网站可以兼职做任务网络推广营销培训机构
  • 昆山网站制作哪家强找公司做网站多少钱
  • 网站管理cms网站快速优化排名排名
  • 甘肃搜索引擎网络优化seo网络优化师招聘
  • ftp如何上传网站深圳网站设计公司排行
  • 个人网站备案网址武汉seo系统
  • wordpress限制用户权限北京seo的排名优化
  • 石家庄市建设局网站上海seo优化服务公司
  • seo外包服务优化合肥网站关键词优化公司
  • 南通的网站建设网上怎么推销自己的产品
  • 香港网站建设展览关键词热度查询
  • project 网站开发计划婚恋网站排名前三
  • 学校网站建设源代码seo优化专员
  • 兰州市城市建设设计院网站优化大师客服电话
  • 购物网站有哪些平台网站设计公司模板
  • 网站注册了域名然后怎么做兰州正规seo整站优化
  • 做网站哪家最便宜优化站点