当前位置: 首页 > news >正文

专门做二手房车的网站网站优化团队

专门做二手房车的网站,网站优化团队,wordpress all in one seo,视频号分销解决方案优化和深度学习的关系 优化是最小化损失函数,而深度学习的目标是在给定有限数据量的情况下寻找合适的模型,分别对应着训练误差和泛化误差;需要注意过拟合; 优化面临的挑战(求解数值解) 局部最小值&#…
  1. 优化和深度学习的关系
  • 优化是最小化损失函数,而深度学习的目标是在给定有限数据量的情况下寻找合适的模型,分别对应着训练误差和泛化误差;
  • 需要注意过拟合;
  1. 优化面临的挑战(求解数值解)
  • 局部最小值:当优化问题的数值解接近局部最优值的时候,目标函数解的梯度接近或者变为0,通过迭代获得的数值解可能仅使目标函数局部最优,而不是全局最优,一定程度的噪声会使参数跳出局部最小值,这是小批量随机梯度下降的有利特性之一,此时小批量上梯度的自然变化能够将参数从局部最小资中跳出;
  • 鞍点:定义为梯度为0但是既不是全局最小值也不是局部最小值的点,尽管不是最小值,但是优化可能会停止,假设输入是k维向量,假设在0梯度处的Hessian矩阵的k个特征值均为正,此时局部最小值,均为负,为局部最大值,有正有负为鞍点;
  • 梯度消失
  1. 凸性
  • 凸集:对于任意的 a , b ∈ X a,b\in X a,bX,连接 a , b a,b a,b的线段也位于 X X X,则集合 X X X是凸集,数学化表示,对于任意 λ ∈ [ 0 , 1 ] \lambda\in[0,1] λ[0,1],有 λ a + ( 1 − λ ) b ∈ X \lambda a + (1-\lambda) b\in X λa+(1λ)bX,例如实数集,两个凸集的交集也是凸集;
  • 凸函数:对于所有 x , x ′ ∈ X , λ ∈ [ 0 , 1 ] x,x'\in X,\lambda\in [0,1] x,xX,λ[0,1],有 λ f ( x ) + ( 1 − λ ) f ( x ′ ) ≥ f ( λ x + ( 1 − λ ) x ′ ) \lambda f(x) + (1-\lambda)f(x') \geq f(\lambda x + (1-\lambda)x') λf(x)+(1λ)f(x)f(λx+(1λ)x);
  • 詹森不等式:凸性定义的推广 ∑ i α i f ( x i ) ≥ f ( ∑ i α i x i ) , ∑ i α i = 1 \sum_i\alpha_if(x_i)\geq f(\sum_i\alpha_i x_i),\sum_i\alpha_i=1 iαif(xi)f(iαixi),iαi=1;
  • 凸函数的性质:凸函数的局部极小值是全局极小值

i. 特征值和特征向量, A v = λ v Av=\lambda v Av=λv,其中 v v v是特征向量, λ \lambda λ是特征值;例如对于 A = [ 2 1 2 3 ] A = \begin{bmatrix} 2 & 1\\ 2 & 3\end{bmatrix} A=[2213],他的特征值是 4 , 1 4,1 4,1对应的两个特征向量是 [ 1 2 ] \begin{bmatrix} 1\\ 2\end{bmatrix} [12] [ 1 − 1 ] \begin{bmatrix} 1 \\ -1\end{bmatrix} [11]
ii. 求解特征值和特征向量: ( A − λ I ) v = 0 (A-\lambda I)v = 0 (AλI)v=0,所以 ( A − λ I ) (A-\lambda I) (AλI)不可逆,也就是 d e t ( A − λ I ) = 0 det(A-\lambda I)= 0 det(AλI)=0,即可解得特征值
iii. 延续上面的例子,特征向量组成的矩阵 W = [ 1 1 − 1 2 ] W=\begin{bmatrix}1 & 1\\-1 & 2\end{bmatrix} W=[1112],特征值组成的矩阵 ∑ = [ 1 0 0 4 ] \sum=\begin{bmatrix}1 & 0\\0 & 4\end{bmatrix} =[1004],可得 A W = W ∑ AW=W\sum AW=W,而且 W W W是可逆的,所以等式两边同乘 W − 1 W^{-1} W1得到 A = W ∑ W − 1 A=W\sum W^{-1} A=WW1
iv. 一些良好的性质: A n = W ∑ n W − 1 A^n = W\sum^n W^{-1} An=WnW1,也就是对应一个矩阵的乘方进行特征值分解,只需要将特征值进行同样的n次方即可,此时n需要时正数;对于矩阵的求逆, A − 1 = W ∑ − 1 W − 1 A^{-1}=W\sum^{-1}W^{-1} A1=W1W1,可以看到对矩阵的逆进行特征值分解,直接对特征值求逆即可;矩阵的行列式等于矩阵的特征值的乘积 d e t ( A ) = λ 1 ⋯ λ n det(A) = \lambda_1\cdots \lambda_n det(A)=λ1λn;矩阵的秩等于非0特征值的个数;
v. https://d2l.ai/chapter_appendix-mathematics-for-deep-learning/eigendecomposition.html

http://www.qdjiajiao.com/news/3864.html

相关文章:

  • 新洲建设局网站软文写作的基本要求
  • 网站制作公司 深圳线上推广的公司
  • 常州天宁区做网站公司磁力天堂最新版地址
  • 中企动力做的网站后台怎么登陆seo月薪
  • 专业网站设计公司排名做一个简单网页
  • 整站优化昌吉可以吗?chatgpt 网址
  • 网站建设多长时间关键词工具软件
  • 网站系统分析报告营销网站类型
  • 做网站还能挣钱吗整站关键词排名优化
  • 泉州做网站排名备案查询站长工具
  • 资料库网站应该怎么做百度推荐现在为什么不能用了
  • 外贸网站如何选择域名网络营销岗位职责和任职要求
  • 建设政府网站的目的电商seo优化
  • 深圳企业网站建设服务平台营销网络营销
  • 男女视频做爰的网站网络营销推广微信hyhyk1效果好
  • 网站制作 上海网络热线百度热搜词排行榜
  • 网页网站开发公司360收录入口
  • 单页网站制作 在线 支付产品怎么做推广和宣传
  • 怎么做草坪网站聚合搜索引擎接口
  • 网站开发的收获与体会百度搜索关键词排行榜
  • 做网站 一年需要多少钱百度统计手机app
  • java论坛源码百度seo软件优化
  • 企业网站的功能模块seo推广公司教程
  • 小城市网站建设业务百度收录教程
  • 广西网站建设推荐百度服务中心官网
  • 黄冈网站推广软件哪里买官网首页入口百度
  • 让人做网站需要注意什seo 页面
  • 武汉做网络营销的公司优化设计六年级上册数学答案
  • 专业网站开发技术网站维护中
  • 建设网站前端广西网站建设制作