当前位置: 首页 > news >正文

建立英文翻译青岛网站优化公司哪家好

建立英文翻译,青岛网站优化公司哪家好,大专毕业论文 企业的网站建设,网站建设公司项目介绍目录 一、实验介绍 二、实验环境 1. 配置虚拟环境 2. 库版本介绍 三、实验内容 0. 导入必要的工具包 1. 定义激活函数 logistic(z) tanh(z) relu(z) leaky_relu(z, gamma0.1) 2. 定义输入、权重、偏置 3. 计算净活性值 4. 绘制激活函数的图像 5. 应用激活函数并…

目录

一、实验介绍

 二、实验环境

1. 配置虚拟环境

2. 库版本介绍

三、实验内容

0. 导入必要的工具包

1. 定义激活函数

logistic(z)

tanh(z)

relu(z)

leaky_relu(z, gamma=0.1)

2. 定义输入、权重、偏置

3.  计算净活性值

4. 绘制激活函数的图像

5. 应用激活函数并打印输出结果

6. 代码整合


 

 

 

 

一、实验介绍

        本实验展示了使用PyTorch实现不同激活函数。

  • 计算净活性值,并将其应用于Sigmoid、双曲正切、ReLU和带泄漏的修正线性单元函数。
  • 绘制这些激活函数的图像、打印输出结果,展示了它们在不同输入范围内的行为和输出结果。

 

 二、实验环境

        本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16 
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

 

三、实验内容

ChatGPT:

        前馈神经网络(Feedforward Neural Network)是一种常见的人工神经网络模型,也被称为多层感知器(Multilayer Perceptron,MLP)。它是一种基于前向传播的模型,主要用于解决分类和回归问题。

        前馈神经网络由多个层组成,包括输入层、隐藏层和输出层。它的名称"前馈"源于信号在网络中只能向前流动,即从输入层经过隐藏层最终到达输出层,没有反馈连接。

以下是前馈神经网络的一般工作原理:

  1. 输入层:接收原始数据或特征向量作为网络的输入,每个输入被表示为网络的一个神经元。每个神经元将输入加权并通过激活函数进行转换,产生一个输出信号。

  2. 隐藏层:前馈神经网络可以包含一个或多个隐藏层,每个隐藏层由多个神经元组成。隐藏层的神经元接收来自上一层的输入,并将加权和经过激活函数转换后的信号传递给下一层。

  3. 输出层:最后一个隐藏层的输出被传递到输出层,输出层通常由一个或多个神经元组成。输出层的神经元根据要解决的问题类型(分类或回归)使用适当的激活函数(如Sigmoid、Softmax等)将最终结果输出。

  4. 前向传播:信号从输入层通过隐藏层传递到输出层的过程称为前向传播。在前向传播过程中,每个神经元将前一层的输出乘以相应的权重,并将结果传递给下一层。这样的计算通过网络中的每一层逐层进行,直到产生最终的输出。

  5. 损失函数和训练:前馈神经网络的训练过程通常涉及定义一个损失函数,用于衡量模型预测输出与真实标签之间的差异。常见的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross-Entropy)。通过使用反向传播算法(Backpropagation)和优化算法(如梯度下降),网络根据损失函数的梯度进行参数调整,以最小化损失函数的值。

        前馈神经网络的优点包括能够处理复杂的非线性关系,适用于各种问题类型,并且能够通过训练来自动学习特征表示。然而,它也存在一些挑战,如容易过拟合、对大规模数据和高维数据的处理较困难等。为了应对这些挑战,一些改进的网络结构和训练技术被提出,如卷积神经网络(Convolutional Neural Networks)和循环神经网络(Recurrent Neural Networks)等。

本系列为实验内容,对理论知识不进行详细阐释

(咳咳,其实是没时间整理,待有缘之时,回来填坑)

977468b5ae9843c6a88005e792817cb1.png

 

0. 导入必要的工具包

  • torch:PyTorch深度学习框架的主要包。
  • matplotlib.pyplot:用于绘制图形的Python库。
# 导入必要的工具包
import torch
# 绘画时使用的工具包
import matplotlib.pyplot as plt

 

1. 定义激活函数

  • logistic(z)

    • 实现逻辑斯蒂(Logistic)函数,将输入张量z应用于逻辑斯蒂函数的公式,并返回结果。
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))
  • tanh(z)

    • 实现双曲正切(Tanh)函数,将输入张量z应用于双曲正切函数的公式,并返回结果。
def tanh(z):return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))
  • relu(z)

    • 实现修正线性单元(ReLU)函数,将输入张量z应用于ReLU函数的公式,并返回结果。
def relu(z):return torch.max(z, torch.zeros_like(z))
  • leaky_relu(z, gamma=0.1)

    • 实现带泄漏的修正线性单元(Leaky ReLU)函数,将输入张量z应用于Leaky ReLU函数的公式,并返回结果。
def leaky_relu(z, gamma=0.1):positive = torch.max(z, torch.zeros_like(z))negative = torch.min(z, torch.zeros_like(z))return positive + gamma * negative

 

2. 定义输入、权重、偏置

  • x:一个形状为(2, 5)的张量,代表两个样本,每个样本有5个特征。
  • w:一个形状为(5, 1)的张量,代表权重向量,其中每个权重与一个特征相对应。
  • b:一个形状为(1, 1)的张量,代表偏置项。
# x 表示两个含有5个特征的样本,x是一个二维的tensor
x = torch.randn((2, 5))
# w 表示含有5个参数的权重向量,w是一个二维的tensor
w = torch.randn((5, 1))
# 偏置项,b是一个二维的tensor,但b只有一个数值
b = torch.randn((1, 1))

 

3.  计算净活性值

  • z:通过将输入张量x与权重张量w相乘,并加上偏置项b得到的张量。
# 矩阵乘法,请注意 x 和 w 的顺序,与 b 相加时使用了广播机制
z = torch.matmul(x, w) + b

 

4. 绘制激活函数的图像

  • 创建一个图像窗口,并绘制四个子图。
  • 在第一个子图中绘制Sigmoid型激活函数和双曲正切函数的图像。
  • 在第二个子图中绘制ReLU型激活函数和带泄漏的修正线性单元函数的图像。
  • 添加图例,并显示图像。
# 从-10 到 10 每间隔0.01 取一个数
a = torch.arange(-10, 10, 0.01)
plt.figure()
# 在第一个子图中绘制Sigmoid型激活函数
plt.subplot(2, 2, 1)
plt.plot(a.tolist(), logistic(a).tolist(), color='red', label='logistic')
plt.plot(a.tolist(), tanh(a).tolist(), color='blue', linestyle='--', label='tanh')
# 在第二个子图中绘制ReLU型激活函数
plt.subplot(222)
plt.plot(a.tolist(), relu(a).tolist(), color='g', label='relu')
plt.plot(a.tolist(), leaky_relu(a).tolist(), color='black', linestyle='--', label='leaky relu')plt.legend()
plt.show()

667f2f0eb586465aa94f083b9674761a.png

 

5. 应用激活函数并打印输出结果

  • sig_output:将净活性值z应用于Sigmoid函数,得到激活后的输出。
  • tan_output:将净活性值z应用于双曲正切函数,得到激活后的输出。
  • relu_output:将净活性值z应用于ReLU函数,得到激活后的输出。
  • 打印输出结果。
# z为前面计算的净活性值
sig_output = torch.sigmoid(z)
tan_output = torch.tanh(z)
relu_output = torch.relu(z)
# 打印输出结果
print('sigmoid:', sig_output)
print('tanh:', tan_output)
print('ReLU:', relu_output)

a414f60be37547318616cbd5bfb92c50.png

 

6. 代码整合

# 导入必要的工具包
import torch
# 绘画时使用的工具包
import matplotlib.pyplot as plt# Logistic 函数
def logistic(z):return 1.0 / (1.0 + torch.exp(-z))# Tanh函数
def tanh(z):return (torch.exp(z) - torch.exp(-z)) / (torch.exp(z) + torch.exp(-z))# ReLU函数
def relu(z):return torch.max(z, torch.zeros_like(z))# leakyReLU函数
def leaky_relu(z, gamma=0.1):positive = torch.max(z, torch.zeros_like(z))negative = torch.min(z, torch.zeros_like(z))return positive + gamma * negative# x 表示两个含有5个特征的样本,x是一个二维的tensor
x = torch.randn((2, 5))
# w 表示含有5个参数的权重向量,w是一个二维的tensor
w = torch.randn((5, 1))
# 偏置项,b是一个二维的tensor,但b只有一个数值
b = torch.randn((1, 1))
# 矩阵乘法,请注意 x 和 w 的顺序,与 b 相加时使用了广播机制
z = torch.matmul(x, w) + b
# 画出激活函数的图像
# 从-10 到 10 每间隔0.01 取一个数
a = torch.arange(-10, 10, 0.01)
plt.figure()
# 在第一个子图中绘制Sigmoid型激活函数
plt.subplot(2, 2, 1)
plt.plot(a.tolist(), logistic(a).tolist(), color='red', label='logistic')
plt.plot(a.tolist(), tanh(a).tolist(), color='blue', linestyle='--', label='tanh')
# 在第二个子图中绘制ReLU型激活函数
plt.subplot(222)
plt.plot(a.tolist(), relu(a).tolist(), color='g', label='relu')
plt.plot(a.tolist(), leaky_relu(a).tolist(), color='black', linestyle='--', label='leaky relu')plt.legend()
plt.show()# z为前面计算的净活性值
sig_output = torch.sigmoid(z)
tan_output = torch.tanh(z)
relu_output = torch.relu(z)
# 打印输出结果
print('sigmoid:', sig_output)
print('tanh:', tan_output)
print('ReLU:', relu_output)

 

 

 

 

 

http://www.qdjiajiao.com/news/11598.html

相关文章:

  • 苏州电子商务网站建设产品推广方案怎么写
  • 定制网站制作广州电商热门关键词
  • 做网站工作都包括什么搜索网站排行榜
  • 湖州服装网站建设体育热点新闻
  • 网站改版需要重新备案吗免费b站软件推广网站
  • 音乐网站怎么做精准关键词软文推广怎么做
  • 拥有自己的网站 如何做推广关键字搜索
  • 什么是网络营销品牌海口关键词优化报价
  • 深圳住房和建设委员会网站软文是什么东西
  • 淘宝客怎样做自己的网站推广竞价网站
  • 做公司网站哪家好重庆九龙坡区做一个企业网站大概需要多少钱
  • 苏州小程序开发公司qq关键词排名优化
  • 余姚网站建设公司网站网络营销
  • 手机端网站外部链接如何去优化福州seo建站
  • 单页网站seo怎么做百度精简版网页入口
  • 西直门网站建设网页设计网站
  • 义乌网站开发公司临沂森佳木业有限公司
  • 用html怎么做网站尾部市场调研报告怎么做
  • 东莞市手机网站建设怎么样福州百度推广优化排名
  • 创新设计安卓优化大师下载安装
  • sql数据库环境网站搭建教程电商如何从零做起
  • 网站关键词设置代码理发培训专业学校
  • 手机编程网站b站推广网站2023
  • 让别人做网站的步骤东营seo整站优化
  • jsp做网站组件东莞网络营销销售
  • 大连里程科技做网站百度站长平台注册
  • 提高网站访问量北京百度推广代理公司
  • 定制网站开发价格百度权重查询
  • 东营做网站m0536天津网络广告公司
  • 珠海网站制作公司旅游网站网页设计