当前位置: 首页 > news >正文

龙岩天宫山简介概况百度搜索引擎优化怎么做

龙岩天宫山简介概况,百度搜索引擎优化怎么做,怎样做鲜花批发的网站,做网站必须要认证吗一、方法详解 首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。 有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。 PyTorch torch.stack() method joins (concaten…

一、方法详解

首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。
在这里插入图片描述
有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。

PyTorch torch.stack() method joins (concatenates) a sequence of tensors (two or more tensors) along a new dimension. It inserts new dimension and concatenates the tensors along that dimension. This method joins the tensors with the same dimensions and shape. We could also use torch.cat() to join tensors But here we discuss the torch.stack() method.

torch.stack方法用于沿着一个新的维度 join(也可称为cat)一系列的张量(可以是2个张量或者是更多),它会插入一个新的维度,并让张量按照这个新的维度进行张量的cat操作。值得注意的是:张量序列中的张量必须要有相同的shape和dimension。

在这里插入图片描述

Parameters
tensors:张量序列,也就是要进行stack操作的对象,可以有很多个张量。
dim:按照dim的方式对这些张量进行stack操作,也就是你要按照哪种堆叠方式对张量进行堆叠。dim的取值范围为闭区间[0,输入Tensor的维数]
return
堆叠后的张量

只通过理论对方法进行解释说明是不够直观的,下面会通过大量的示例对torch.stack方法进行解析!

二、案例解析

2.1 案例1:2个一维tensor进行stack操作

  • 程序
 x = t.tensor([1,2,3,4])y = t.tensor([5,6,7,8])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)
  • 运行结果
torch.Size([4])
torch.Size([4])tensor([[1, 2, 3, 4],[5, 6, 7, 8]])
torch.Size([2, 4])tensor([[1, 5],[2, 6],[3, 7],[4, 8]])
torch.Size([4, 2])
  • 图解
    在这里插入图片描述

2.2 案例2:2个二维tensor进行stack操作

  • 程序
 x = t.tensor([[1,2,3],[4,5,6]])y = t.tensor([[7,8,9],[10,11,12]])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)z3 = t.stack((x,y), dim=2)print(z3)print(z3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]])
torch.Size([2, 3, 2])
  • 图解
    在这里插入图片描述

2.3 案例3:多个二维tensor进行stack操作

  • 程序
x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = torch.tensor([[13,14,15],[16,17,18]])
print(x.shape)
print(y.shape)
print(z.shape)r1 = torch.stack((x,y,z),dim=0)
print(r1)
print(r1.shape)r2 = torch.stack((x,y,z),dim=1)
print(r2)
print(r2.shape)r3 = torch.stack((x,y,z),dim=2)
print(r3)
print(r3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]],[[13, 14, 15],[16, 17, 18]]])
torch.Size([3, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9],[13, 14, 15]],[[ 4,  5,  6],[10, 11, 12],[16, 17, 18]]])
torch.Size([2, 3, 3])tensor([[[ 1,  7, 13],[ 2,  8, 14],[ 3,  9, 15]],[[ 4, 10, 16],[ 5, 11, 17],[ 6, 12, 18]]])
torch.Size([2, 3, 3])
  • 图解

2.4 案例4:2个三维tensor进行stack操作

  • 程序
x = torch.tensor([[[1,2,3],[4,5,6]],[[2,3,4],[5,6,7]]])
y = torch.tensor([[[7,8,9],[10,11,12]],[[8,9,10],[11,12,13]]])
print(x.shape)
print(y.shape)
z1 = torch.stack((x,y),dim=0)
print(z1)
print(z1.shape)
z2 = torch.stack((x,y),dim=1)
print(z2)
print(z2.shape)
z3 = torch.stack((x,y),dim=2)
print(z3)
print(z3.shape)
z4 = torch.stack((x,y),dim=3)
print(z4)
print(z4.shape)
  • 运行结果
torch.Size([2, 2, 3])
torch.Size([2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 2,  3,  4],[ 5,  6,  7]]],[[[ 7,  8,  9],[10, 11, 12]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]],[[[ 2,  3,  4],[ 5,  6,  7]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]],[[[ 2,  3,  4],[ 8,  9, 10]],[[ 5,  6,  7],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]],[[[ 2,  8],[ 3,  9],[ 4, 10]],[[ 5, 11],[ 6, 12],[ 7, 13]]]])
torch.Size([2, 2, 3, 2])
  • 图解

参考文献

[1]https://blog.csdn.net/flyingluohaipeng/article/details/125034358
[2]https://www.geeksforgeeks.org/python-pytorch-stack-method/
[3]https://www.bing.com/search?q=torch.stack&form=ANNTH1&refig=653766bda2d540398dfb83d482cd33cd

http://www.qdjiajiao.com/news/10846.html

相关文章:

  • 柳市那些做网站的公司广州信息流推广公司排名
  • 大连做网站制作上海网站搜索排名优化哪家好
  • 做设计网上揽活哪个网站最好深圳网站关键词
  • 龙岩e网站重庆百度地图
  • 网站 刷流量电商运营多少钱一个月
  • 湖南省建设银行网站官网百度商城购物
  • 网站怎么进入后台管理国内网络销售平台有哪些
  • 濮阳市做网站怎么建网页
  • facebook怎么推广网站网络营销的优势有哪些?
  • 营销型企业网站功能青岛关键词排名提升
  • wordpress文章密码海南seo排名优化公司
  • 兰州新站点seo加盟软文台
  • 网站有必要使用伪静态么网络营销知识点
  • 做百科发那些网站新闻好seo成功的案例和分析
  • smartvideo wordpress长沙建站seo公司
  • 做网站公司佛山百度关键词工具在哪里
  • 脚底长了像水泡一样的东西很痒什么原因桂平seo快速优化软件
  • 全球疫情每日数据查询搜索引擎优化是什么工作
  • 网站的服务器选择上海建站seo
  • 电气设计软件有哪些独立站优化
  • jsp网站建设 书籍网络营销师证
  • 烟台网站建设兼职网站推广seo优化
  • seo网站案例站长工具永久
  • 品牌策划公司价格搜索引擎优化的主要工作
  • 便宜做网站价格四川seo关键词工具
  • 服装网站设计欣赏网络营销策略理论
  • 镇江网站建设费用东莞seo优化seo关键词
  • 网站qq在线客服系统seo专员很难吗
  • 网站怎么做架构图网络营销的12种手段
  • 微信网站怎么做的好名字企业邮箱账号