当前位置: 首页 > news >正文

贝尔利网站精准营销及推广

贝尔利网站,精准营销及推广,富阳做网站洛洛科技,云企网站建设开发六、算法复杂性初步 重要的复杂性类 P P P 的定义 多项式时间内可解的问题 若 L ∈ P L∈P L∈P,则存在确定性多项式时间的图灵机 M M M,使得 M ( x ) 1 ⟺ x ∈ L M(x)1⟺x∈L M(x)1⟺x∈L N P NP NP 的定义 多项式时间内可验证验证解的正确性 &…

六、算法复杂性初步


重要的复杂性类

  • P P P 的定义

    • 多项式时间内可解的问题

    • L ∈ P L∈P LP,则存在确定性多项式时间的图灵机 M M M,使得
      M ( x ) = 1 ⟺ x ∈ L M(x)=1⟺x∈L M(x)=1xL

  • N P NP NP 的定义

    • 多项式时间内可验证验证解的正确性

    • (表示非确定性多项式时间而不是非多项式时间)

    • L ∈ N P L∈NP LNP,则存在确定性多项式时间的图灵机 M M M,使得
      x ∈ L ⟺ ∃ w ∈ { 0 , 1 } p l o y ( n ) s . t . M ( x , w ) = 1 x∈L⟺\exist w∈\{0,1\}^{ploy(n)}\ \ s.t.\ M(x,w)=1 xLw{0,1}ploy(n)  s.t. M(x,w)=1
      注:如果 x ∈ L x∈L xL,那么存在一个证书 w w w,使 M M M能够在多项式时间内验证 x ∈ M x∈M xM

  • N P − h a r d NP-hard NPhard

    • 若一个问题属于 N P − h a r d NP-hard NPhard,那么它可以在多项式时间内规约成 N P NP NP 问题
  • N P − c o m p l e t e NP-complete NPcomplete

    • N P NP NP N P − h a r d NP-hard NPhard的交集,即 N P C = N P ∩ N P H NPC=NP∩NPH NPC=NPNPH
    • N P C NPC NPC N P NP NP中最难的问题,如果找到多项式时间解决 N P C NPC NPC,那么 P = N P P=NP P=NP

image-20241229184701985


SAT 问题

定义:给定一个布尔逻辑表达式,判断是否存在一个布尔变量赋值,使得整个表达式的值为真。

合取范式(CNF):一种布尔逻辑表达式的标准化形式,若干个句子合取(AND),每个句子中若干个文字析取(OR)

例如,以下一个CNF公式:
( ¬ a 1 ∨ a 2 ) ∧ ( ¬ a 1 ∨ a 3 ∨ a 4 ) ∧ ( a 1 ∨ ¬ a 2 ∨ a 3 ∨ ¬ a 4 ) (\neg a_1 \lor a_2) \land (\neg a_1 \lor a_3 \lor a_4) \land (a_1 \lor \neg a_2 \lor a_3 \lor \neg a_4) (¬a1a2)(¬a1a3a4)(a1¬a2a3¬a4)
注:存在一种赋值,使其中一个句子为真,整个CNF即为真。

2-SAT问题:每个子句恰好包含2个文字。 P P P 类问题。

3-SAT问题:每个子句恰好包含3个文字。 N P − c o m p l e t e NP-complete NPcomplete 问题。

  • 例如: ( l 1 ∨ l 2 ∨ l 3 ) ∧ ( l 4 ∨ l 5 ∨ l 6 ) ∧ ⋯ (l_1 \lor l_2 \lor l_3) \land (l_4 \lor l_5 \lor l_6) \land \cdots (l1l2l3)(l4l5l6)

当n>2,n-SAT问题就是NP-hard的。任何n-SAT都可以通过引入新变量的方法转化为3-SAT问题。


随机化算法

ZPP类型

  • 保证一定能找到正确答案
  • 需要多次运行,可以在期望的多项式时间内找到结果
  • 即:保证正确性,运行时间随机性
  • 如:随机化快速排序、随机化选择算法

BPP类型

  • 不保证得到正确答案,结果可能出错
  • 时间是确定的多项式时间
  • 即:时间复杂度好,结果不好
  • 如:矩阵恒等式测试

6.1 证明: P ⊆ N P P⊆NP PNP

证明

  • 对于 P P P问题的图灵机 M M M,构造另一个图灵机 M ′ M' M:输入是 w w w x x x,对于相同的 x x x有相同的输出, w w w对输出无影响
  • x ∈ L x∈L xL时, M ( x ) = 1 M(x)=1 M(x)=1,存在 w ′ ∈ 0 , 1 p l o y ( n ) w'∈{0,1}^{ploy(n)} w0,1ploy(n) M ′ ( x , w ′ ) = 1 M'(x,w')=1 M(x,w)=1
  • x ∉ L x ∉L x/L时, M ( x ) = 0 M(x)=0 M(x)=0,对于任意的 w w w M ′ ( x , w ) = 0 M'(x,w)=0 M(x,w)=0
  • 显然 M ′ M' M是确定性多项式图灵机,结合 N P NP NP问题定义,存在 w ′ ∈ 0 , 1 p l o y ( n ) w'∈{0,1}^{ploy(n)} w0,1ploy(n) M ′ ( x , w ′ ) = 1 M'(x,w')=1 M(x,w)=1,验证解是否正确。所以该 P P P问题也是一个 N P NP NP问题,所以 P ⊆ N P P⊆NP PNP

6.2 证明: 如果存在 N P NP NP 难的问题 Π ∈ P Π ∈ P ΠP,则 P = N P P = NP P=NP

证明

  • 根据 Π ∈ P Π ∈ P ΠP,得 Π Π Π在多项式时间可解决
  • 根据 N P − h a r d NP-hard NPhard 定义,所有 N P NP NP问题 F F F可在多项式时间内规约到 Π Π Π,即 F ∈ N P F∈NP FNP,有 F ≤ p Π F≤_pΠ FpΠ
  • 所以 F F F在多项式时间转化为 Π Π Π,再多项式求解 Π Π Π,整个过程是多项式时间完成的,所以 N P ⊆ P NP⊆P NPP
  • 又已知 P ⊆ N P P⊆NP PNP,所以证得 P = N P P=NP P=NP

6.3 证明:如果 N P = P NP=P NP=P,则单向陷门不存在。

  • 假设算法Invert用来寻找函数 f f f的逆映射:利用一系列语言 L i Li Li,表示是否存在 w w w使得 y = f ( z ∣ ∣ w ) y=f(z||w) y=f(z∣∣w)
  • 根据文本内容, L i Li Li属于 N P NP NP,同依据条件,也属于 P P P
  • 如果 P = N P P=NP P=NP,那么该算法能在多项式内求解,即找到了函数 f f f的逆映射,也就是找到 x x x使得 f ( x ) = y f(x)=y f(x)=y
  • 综上,若 N = N P N=NP N=NP,多项式时间可破坏单项函数的不可逆的性质,则单向陷门不存在

http://www.qdjiajiao.com/news/8805.html

相关文章:

  • 做棋牌网站的步骤网络推广营销方式
  • idc销售网站源码环球军事网
  • 网站设计与建设报告免费推广引流平台有哪些
  • 个人网站做音乐网要备文化今日资讯最新消息
  • 怎么做网页web无锡seo优化
  • 政府网站安全建设总结sem和seo有什么区别
  • 前端网站建设和维护河北seo网络优化师
  • 网站建设丶金手指花总11游戏推广员一个月能赚多少
  • 大学生个人简历模板免费365优化大师软件下载
  • 如何建设公司门户网站墨子学院seo
  • 广州网站优化注意事项seo技术培训班
  • 厂家直销网站建设软文营销定义
  • 网站建设肆金手指排名6sem模型
  • dz做分类网站网络运营主要做什么工作
  • 郑州高新区网站建设seo搜索引擎工具
  • 网站建设代理哪个好搜索引擎下载入口
  • 国外ps教程网站本地推荐本地推荐
  • 本机建的网站打开却很慢东莞百度推广优化
  • 免费建设网站的好么百度网址链接是多少
  • 浙江省水利建设行业协会网站广东做seo的公司
  • 有哪些网站可以免费做推广长沙关键词快速排名
  • 网站建设与营销服务最近的新闻大事10条
  • 做销售网站需要多少钱快速整站排名seo教程
  • 美团做团购网站nba最新交易消息
  • 网上签到做任务赚钱的网站怎么优化网站
  • 普陀网站建设公司软件开发培训机构排名
  • 展馆展示设计公司排名免费关键词优化排名软件
  • 外贸b2c网站建设知名做网站的公司
  • 河南做网站那家最好惠州seo关键词排名
  • 企业手机网站建设案例百度极速版下载安装