当前位置: 首页 > news >正文

做的最好的epub网站郑州整站网站优化

做的最好的epub网站,郑州整站网站优化,怎么用网络推广,湖州网站建设引言 今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。 SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。 GLU GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层…

引言

今天介绍LLAMA模型引入的关于激活函数的改进——SwiGLU1,该激活函数取得了不错的效果,得到了广泛地应用。

SwiGLU是GLU的一种变体,其中包含了GLU和Swish激活函数。

GLU

GLU(Gated Linear Units,门控线性单元)2引入了两个不同的线性层,其中一个首先经过sigmoid函数,其结果将和另一个线性层的输出进行逐元素相乘作为最终的输出:
GLU ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) (1) \text{GLU}(x,W,V,b,c) = \sigma(xW+b) \otimes (xV+c) \tag 1 GLU(x,W,V,b,c)=σ(xW+b)(xV+c)(1)
这里 W , V W,V W,V以及 b , c b,c b,c分别是这两个线性层的参数; σ ( x W + b ) \sigma(xW+b) σ(xW+b)作为门控,控制 x V + c xV+c xV+c的输出。

这里使用 σ \sigma σ作为激活函数,修改改激活函数得到的变体通常能带来更好的性能表现,比如SwiGLU修改激活函数为Swish。我们来看下Swish激活函数。

Swish

Swish3激活函数的形式为:
Swish β ( x ) = x σ ( β x ) (2) \text{Swish}_\beta(x) = x \sigma(\beta x) \tag 2 Swishβ(x)=xσ(βx)(2)
其中 σ ( x ) \sigma(x) σ(x)是Sigmoid函数; β \beta β是一个可学习的参数。

可以通过下面的代码画出Swish激活函数在不同参数 β \beta β下的图像:

import numpy as np
import matplotlib.pyplot as pltdef swish(x, beta):return x / (1 + np.exp(-beta*x))x = np.linspace(-10, 10, 100)
betas = [0.1, 1.0, 10.0]plt.figure(figsize=(10, 6))for beta in betas:y = swish(x, beta)plt.plot(x, y, label=f'beta={beta}')plt.legend()
plt.title('Swish Activation Function')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.show()

image-20240428224729925

可以看到3,当 β \beta β趋近于 0 0 0时,Swish函数趋近于线性函数 y = x 2 y=x^2 y=x2;当 β \beta β趋近于无穷大时,Swish函数趋近于ReLU函数;当 β \beta β取值为 1 1 1时,Swish函数是光滑且非单调的,等价于参考4中介绍的SiLU。

Swish与ReLU之间最显著的区别是当 x < 0 x < 0 x<0时Swish的非单调“凸起”3

SwiGLU

如前文所述,将公式(1)中GLU的激活函数改为Swish即变成了所谓的SwiGLU激活函数1
SwiGLU ( x , W , V ) = Swish β ( x W ) ⊗ ( x V ) (3) \text{SwiGLU}(x,W,V) = \text{Swish}_\beta(xW) \otimes (xV) \tag{3} SwiGLU(x,W,V)=Swishβ(xW)(xV)(3)
这里省略了偏置项。

代码实现

参考LLaMA,全连接层使用带有SwiGLU激活函数的FFN(Position-wise Feed-Forward Network)的公式如下1
FFN SwiGLU ( x , W , V , W 2 ) = ( Swish 1 ( x W ) ⊗ x V ) W 2 (4) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{Swish}_1(\pmb xW) \otimes \pmb xV)W_2 \tag 4 FFNSwiGLU(x,W,V,W2)=(Swish1(xW)xV)W2(4)
这里的Swish函数可以被SiLU函数替代:
SiLU ( x ) = x σ ( x ) \text{SiLU}(\pmb x) = \pmb x \sigma(\pmb x) SiLU(x)=xσ(x)
即:
FFN SwiGLU ( x , W , V , W 2 ) = ( SiLU ( x W ) ⊗ x V ) W 2 (5) \text{FFN}_{\text{SwiGLU}}(\pmb x,W,V,W_2) = (\text{SiLU}(\pmb xW) \otimes \pmb xV)W_2 \tag 5 FFNSwiGLU(x,W,V,W2)=(SiLU(xW)xV)W2(5)

import torch
from torch import nn
import torch.nn.functional as Fclass FeedForward(nn.Module):def __init__(self, hidden_size: int, intermediate_size: int) -> None:super().__init__()self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)def forward(self, x: torch.Tensor) -> torch.Tensor:# x: (batch_size, seq_len, hidden_size)# w1(x) -> (batch_size, seq_len, intermediate_size)# w1(x) -> (batch_size, seq_len, intermediate_size)# w2(*) -> (batch_size, seq_len, hidden_size)return self.w2(F.silu(self.w1(x)) * self.w3(x))

这里w1,w2,w3分别对应公式(5)中的 W , W 2 , V W,W_2,V W,W2,V

注意维度,其中w1,w3x转换到维度intermediate_size,然后w2转换回hidden_size

参考


  1. [论文翻译]GLU Variants Improve Transformer ↩︎ ↩︎ ↩︎

  2. [论文笔记]Language Modeling with Gated Convolutional Networks ↩︎

  3. [论文笔记]SEARCHING FOR ACTIVATION FUNCTIONS ↩︎ ↩︎ ↩︎

  4. [论文笔记]GAUSSIAN ERROR LINEAR UNITS (GELUS) ↩︎

http://www.qdjiajiao.com/news/7335.html

相关文章:

  • 响应式网站管理系统长沙网站seo收费
  • 企业网站需要响应式软文吧
  • 做网站设计怎么提升如何做好网络推广工作
  • 成都装修网站建设设计公司
  • 深圳建设岗位证书报名网站化学sem是什么意思
  • 网站海外推广外包百度认证官网
  • 长宁网站建设商业推广软文范例
  • 校园网网站建设费用cms自助建站系统
  • 河北网站建站系统哪家好seo指的是搜索引擎营销
  • 搭建wordpress步骤惠州seo优化服务
  • 广州外贸公司网站建设免费网站流量统计
  • z怎么做优惠券网站阿里域名注册官网
  • 怎么做物流网站8大营销工具
  • 公司做网站提供产品加盟费厦门seo公司
  • 2019年怎么做网站知乎seo
  • 武威网站建设网络营销服务公司
  • 郑州市做网站的公seo排名赚
  • 外贸推广邮件石家庄seo关键词排名
  • 做网站优化有什么作用怎样策划一个营销型网站
  • 合肥有哪些做网站的公司重庆百度seo公司
  • 企业微网站怎么做网络广告宣传平台
  • 铜陵网站制作外贸推广
  • 双城网站建设哪家好网址推广
  • 做网站seo优化国外域名注册
  • 沈阳哪有做网站的搜狗搜索引擎优化
  • 传奇广告网站怎么做深圳外包seo
  • 校园网站建设招标公告网络市场的四大特点
  • 域名查询站长之家宁波免费建站seo排名
  • 建设部指定发布招标信息网站seo外包服务方案
  • 长沙网站托管哪家好南京seo优化培训