罗湖网站建设多少钱软文范例大全800
基于Spring Boot的多级缓存架构实现
以下是一个基于Spring Boot的多级缓存架构实现示例
多级缓存架构实现方案
1. 依赖配置(pom.xml)
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency><groupId>com.github.ben-manes.caffeine</groupId><artifactId>caffeine</artifactId>
</dependency>
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
2. 缓存配置类
@Configuration
@EnableCaching
public class MultiLevelCacheConfig {// 一级缓存(本地缓存)@Beanpublic CacheManager caffeineCacheManager() {CaffeineCacheManager manager = new CaffeineCacheManager();manager.setCaffeine(Caffeine.newBuilder().maximumSize(1000).expireAfterWrite(30, TimeUnit.SECONDS)); // 本地缓存比Redis缓存更短return manager;}// 二级缓存(Redis缓存)@Beanpublic CacheManager redisCacheManager(RedisConnectionFactory factory) {RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig().entryTtl(Duration.ofMinutes(5)).serializeValuesWith(SerializationPair.fromSerializer(RedisSerializer.json()));return RedisCacheManager.builder(factory).cacheDefaults(config).transactionAware().build();}// 组合缓存管理器@Bean@Primarypublic CacheManager multiLevelCacheManager(@Qualifier("caffeineCacheManager") CacheManager level1,@Qualifier("redisCacheManager") CacheManager level2) {return new MultiLevelCacheManager(level1, level2);}
}
3. 多级缓存管理器实现
public class MultiLevelCacheManager implements CacheManager {private final CacheManager level1; // 本地缓存private final CacheManager level2; // Redis缓存private final ConcurrentMap<String, Cache> cacheMap = new ConcurrentHashMap<>();public MultiLevelCacheManager(CacheManager level1, CacheManager level2) {this.level1 = level1;this.level2 = level2;}@Overridepublic Cache getCache(String name) {return cacheMap.computeIfAbsent(name, key -> new MultiLevelCache(level1.getCache(name), level2.getCache(name)));}@Overridepublic Collection<String> getCacheNames() {return Stream.concat(level1.getCacheNames().stream(),level2.getCacheNames().stream()).collect(Collectors.toSet());}// 多级缓存实现static class MultiLevelCache implements Cache {private final Cache level1;private final Cache level2;private final String name;public MultiLevelCache(Cache level1, Cache level2) {this.level1 = level1 != null ? level1 : new NoOpCache();this.level2 = level2 != null ? level2 : new NoOpCache();this.name = level1.getName() + ":" + level2.getName();}@Overridepublic String getName() {return name;}@Overridepublic Object getNativeCache() {return this;}@Overridepublic ValueWrapper get(Object key) {// 先查一级缓存ValueWrapper value = level1.get(key);if (value == null) {// 二级缓存查询value = level2.get(key);if (value != null) {// 回填一级缓存level1.put(key, value.get());}}return value;}@Overridepublic <T> T get(Object key, Class<T> type) {// 实现逻辑类似get方法T value = level1.get(key, type);if (value == null) {value = level2.get(key, type);if (value != null) {level1.put(key, value);}}return value;}@Overridepublic void put(Object key, Object value) {// 同时写入两级缓存level1.put(key, value);level2.put(key, value);}@Overridepublic void evict(Object key) {// 同时清除两级缓存level1.evict(key);level2.evict(key);}@Overridepublic void clear() {level1.clear();level2.clear();}}// 空缓存实现(容错)static class NoOpCache implements Cache {// 实现基础的Cache方法,返回空值}
}
4. 业务层使用
@Service
public class ProductService {@Cacheable(value = "products", key = "#id")public Product getProduct(Long id) {// 数据库查询逻辑return productRepository.findById(id).orElseThrow(() -> new NotFoundException("Product not found"));}@CacheEvict(value = "products", key = "#product.id")public void updateProduct(Product product) {productRepository.save(product);}
}
5. 配置说明(application.yml)
spring:cache:multi-level:level1:ttl: 30s # 本地缓存时间max-size: 1000level2:ttl: 5m # Redis缓存时间redis:host: redis-cluster.prodport: 6379timeout: 2000ms
关键实现要点
- 缓存层级策略
- 一致性保障
- 写操作:同时清除两级缓存(
@CacheEvict
) - 读操作:二级缓存命中后自动回填一级缓存
- TTL策略:一级缓存TTL(30s) < 二级缓存TTL(5m)
- 性能优化
- 本地缓存:使用Caffeine高性能缓存库
- 异步回填:可扩展为异步加载(需自定义CacheLoader)
- 批量操作:支持@Cacheable的批量查询优化
扩展建议
- 缓存预热
@PostConstruct
public void preloadHotData() {// 加载热点数据到缓存hotProducts.forEach(product -> cacheManager.getCache("products").put(product.getId(), product));
}
- 监控集成
@Bean
public MeterRegistryCustomizer<MeterRegistry> cacheMetrics() {return registry -> {CaffeineCacheManager caffeine = context.getBean(CaffeineCacheManager.class);RedisCacheManager redis = context.getBean(RedisCacheManager.class);// 注册Caffeine监控CacheMetrics.monitor(registry, caffeine, "level1");// 注册Redis监控CacheMetrics.monitor(registry, redis, "level2");};
}
- 防雪崩策略
// 在MultiLevelCache.get方法中添加
ValueWrapper get(Object key) {try {// 添加分布式锁检查if (lockManager.tryLock(key)) {// 实际查询逻辑}} finally {lockManager.unlock(key);}
}