当前位置: 首页 > news >正文

wordpress编辑作者投稿者英文网站 seo

wordpress编辑作者投稿者英文,网站 seo,照片制作视频软件,系统优化升级95%后不动了全文目录 概念哈希冲突及原因解决哈希冲突的方法闭散列线性探测二次探测扩容 开散列扩容 哈希的应用位图布隆过滤器 概念 通过映射关系将关键字映射到存储位置,并实现增删改查操作。 通过上面的方法构造出来的结构就叫哈希表(散列表)&#x…

全文目录

  • 概念
  • 哈希冲突及原因
  • 解决哈希冲突的方法
    • 闭散列
      • 线性探测
      • 二次探测
      • 扩容
    • 开散列
      • 扩容
  • 哈希的应用
    • 位图
    • 布隆过滤器

概念

通过映射关系将关键字映射到存储位置,并实现增删改查操作。

在这里插入图片描述

通过上面的方法构造出来的结构就叫哈希表(散列表),其中的映射关系叫做哈希函数

哈希冲突及原因

不同的关键字映射到同一个位置称为哈希冲突

原因:

哈希函数设计得不够合理

哈希函数设计原则:

  • 哈希函数的定义域包括所有关键码,散列表的空间位 n,其值域为 [ 0 , m − 1 ] [0,m - 1] [0,m1]
  • 计算出来的地址均匀分布在整个散列表中
  • 比较简单

其他类型哈希:

哈希函数需要将关键码进行取模操作,这就表示了当其他类型哈希时需要先将关键字转换为整型 —— 可以通过仿函数进行转换。

解决哈希冲突的方法

解决哈希冲突两种常见的方法是:闭散列和开散列

闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

寻找“下一个”空位置的方法:线性探测和二次探测

线性探测

从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

在这里插入图片描述

缺点:

冲突连在一起容易发生数据堆积,不同的关键字占用了可利用的空位置,使得同一个效率下降,影响效率

二次探测

线性探测造成数据堆积的原因是寻找空位置的方式,为了避免数据堆积,二次探测寻找下一个位置的方式为:

H i = ( H 0 + i 2 ) % m H_i = (H_0 + i^2 ) \% m Hi=(H0+i2)%m, 或者: H i = ( H 0 − i 2 ) % m H_i = (H_0 - i^2 ) \% m Hi=(H0i2)%m。其中: i = 1 , 2 , 3 … i = 1,2,3… i=1,2,3 H 0 H_0 H0 是通过散列函数 H a s h ( x ) Hash(x) Hash(x) 对元素的关键码 k e y key key 进行计算得到的位置, m m m 是表的大小。

在这里插入图片描述

扩容

当哈希表的载荷因子达到一定大是进行扩容

在这里插入图片描述

开散列

开散列法又叫链地址法(开链法),将相同地址的关键字分为一个集合称为桶,通过单链表将桶中的元素链接起来。

在这里插入图片描述
在这里插入图片描述

扩容

随着插入的增加,冲突的可能性越来越大即一个桶中节点越来越多,影响哈希表的性能。开散列最好的情况是每个哈希桶都只有一个节点,所以当 元素个数 = = 桶的个数 元素个数 == 桶的个数 元素个数==桶的个数 时进行扩容较为合理

哈希的应用

位图

用一个比特位来存放某种状态,用来快速判断某个数据在不在。

模拟实现:

template<size_t N = 100>
class bitset
{
public:bitset(size_t n = N){_bit.resize(N / 8 + 1, 0);}bitset& set(size_t x, bool val = true){size_t i = x / 8;size_t j = x % 8;if (val){_bit[i] |= 1 << j;}else{_bit[i] &= ~(1 << j);}return *this;}bitset& set(){vector<char> tmp(N / 8 + 1, 1);_bit.swap(tmp);return *this;}bitset& reset(){vector<char> tmp(N / 8 + 1, 0);_bit.swap(tmp);return *this;}bitset& reset(size_t x){size_t i = x / 8;size_t j = x % 8;_bit[i] &= ~(1 << j);return *this;}bool test(size_t x) const{size_t i = x / 8;size_t j = x % 8;return _bit[i] & (1 << j);}private:vector<char> _bit;size_t _size;
};

缺点:

一般只能处理整型

布隆过滤器

用来快速检索数据是否存在,弥补位图只能处理整型的缺憾。

原理:

通过多个哈希函数,将一个数据映射到位图结构中。

但是可能对存在的情况存在一定的误判,误判概率取决于哈希函数的个数和空间的大小:参考文档

http://www.qdjiajiao.com/news/5255.html

相关文章:

  • 泰州做网站无锡网络公司
  • wordpress触屏主题四川seo推广
  • 长沙网站建立公司网站收录入口
  • 网站地图 怎么做点击进入官方网站
  • 如何开办网站全网营销系统是不是传销
  • 微芒网站建设网络推广有多少种方法
  • 无锡网站建设人员电商seo
  • 如何做内部网站产品宣传推广策划
  • 深圳网站建设公司是项目推广方案怎么写
  • 一个产品有两个品牌怎么做网站iis7站长工具
  • 做数学题赚钱的网站月饼营销软文
  • 做直播导航网站好seo优化服务是什么
  • 怎么做网站的步骤成品网站源码在线看
  • 葡萄酒公司网站建设seo优化上海牛巨微
  • 英文网站建设600企业seo排名费用报价
  • 做网站的公司叫什么百度快照优化排名怎么做
  • 莱芜网站开发合肥seo代理商
  • 做网站建设的利润他达拉非的副作用和危害
  • 点网站建设论坛seo教程
  • 北京网站建设备案旺道seo
  • 泸州做网站公司互联网营销师培训课程
  • 哪个网站可以做分期备案查询网
  • 简单网站建设运营北京网站seo招聘
  • 手机怎么做网站网络营销的优势和劣势
  • 网站建设师薪资比较好用的搜索引擎
  • 镇江高端网站建设工作室网站优化要做哪些
  • 建筑公司名称大全站长之家seo
  • 深圳网站维护一般多少钱百度下载安装到桌面上
  • 珠宝设计制作培训seo推广优化工具
  • ftp上传网站 需要什么文件微信营销的模式有哪些