当前位置: 首页 > news >正文

网易企业邮箱怎么发送文件平台seo

网易企业邮箱怎么发送文件,平台seo,无忧主机建站的过程,常熟做公司网站一、(30分)设最小支持度阈值为0.2500, 最小置信度为0.6500。对于下面的规则模板和信息表找出R中的所有强关联规则: S∈R,P(S,x )∧ Q(S,y )> Gpa&#xf…

一、(30分)设最小支持度阈值为0.2500, 最小置信度为0.6500。对于下面的规则模板和信息表找出R中的所有强关联规则:

S∈R,P(S,x )∧ Q(S,y )==> Gpa(S,w ) [ s, c ]
其中,P,Q ∈{ Major, Status ,Age }.

MajorStatusAgeGpaCount
ArtsGraduateOldGood50
ArtsGraduateOldExcellent150
ArtsUndergraduateYoungGood150
Appl_scienceUndergraduateYoungExcellent
ScienceUndergraduateYoungGood100

解答:
样本总数为500,最小支持数为500*0.25 = 125。
在Gpa取不同值的情形下,分别讨论。
(1)Gpa = Good,

MajorStatusAgeCount
ArtsGraduateOld50
ArtsUndergraduateYoung150
ScienceUndergraduateYoung100

频繁1项集L1 = {Major= Arts:200; Status=Undergraduate: 250; Age = Young:250} -----10分
频繁2项集的待选集C2={Major= Arts,Status= Undergraduate:150; Major= Arts,Age=Young:150;Status=Undergraduate, Age=Young:250 }
频繁2项集L2=C2

(2) Gpa = Excellent

MajorStatusAgeCount
ArtsGraduateOld150
Appl_scienceUndergraduateYoung50

频繁1项集L1 = {Major= Arts:150; Status=Graduate: 150; Age = Old:250}
频繁2项集的待选集C2={Major= Arts,Status= Graduate:150; Major= Arts,Age=Old:150;Status=Graduate, Age=Old:150 }
频繁2项集L2=C2

考察置信度:
Major(S,Arts)^Status(S,Undergraduate)=>Gpa(S,Good) [s=150/500=0.3000, c=150/150=1.0000]
Major(S, Arts)^Age(S,Young)=>Gpa(S, Good)[s=150/500=0.3000, c=150/150=1.0000]
Status(S,Undergraduate)^Age(S,Young)=>Gpa(S,Good) [s=250/500=0.5000, c=250/300=0.8333]
Major(S, Arts)^Status(S,Graduate)=>Gpa(S, Excellent)[s=150/500=0.3000, c=150/200=0.7500]
Major(S, Arts)^Age(S,Old)=>Gpa(S, Excellent)[s=150/500=0.3000, c=150/200=0.7500]
Status(S,Graduate)^Age(S,Old)=>Gpa(S,Excellent) [s=150/500=0.3000, c=150/200=0.7500]

因此,所有强关联规则是:
Major(S,Arts)^Status(S,Undergraduate)=>Gpa(S,Good) [s=150/500=0.3000, c=150/150=1.0000]
Major(S, Arts)^Age(S,Young)=>Gpa(S, Good)[s=150/500=0.3000, c=150/150=1.0000]
Status(S,Undergraduate)^Age(S,Young)=>Gpa(S,Good) [s=250/500=0.5000, c=250/300=0.8333]
Major(S, Arts)^Status(S,Graduate)=>Gpa(S, Excellent)[s=150/500=0.3000, c=150/200=0.7500]
Major(S, Arts)^Age(S,Old)=>Gpa(S, Excellent)[s=150/500=0.3000, c=150/200=0.7500]
Status(S,Graduate)^Age(S,Old)=>Gpa(S,Excellent) [s=150/500=0.3000, c=150/200=0.7500]

二、(30分)设类标号属性 Gpa 有两个不同的值( 即{ Good, Excellent } ), 基于信息增益,利用判定树进行归纳分类。

解答:
定义P: Gpa = Good
N: Gpa = Excellent
任何分割进行前,样本集的熵为:

pnI(p,n)
3002000.97095

I(p,n)=-0.6log2(0.6) –0.4log2(0.4)
= 0.97095

考虑按属性Major分割后的样本的熵

MajorpiniI(pi,ni)
Arts2001500.98523
Appl_science0500
Science10000

E(Major) = 350/500*0.98523 = 0.68966

I(p,n)=-(4/7)log2(4/7) –(3/7)log2(3/7) =0.98523

考虑按属性Status分割后的样本的熵

StatuspiniI(pi,ni)
Graduate501500.81128
Undergraduate250500.65002

E(Status) = 200/5000.81128+300/5000.65002 = 0.71452

考虑按属性Age分割后的样本的熵

AgepiniI(pi,ni)
Old501500.81128
Young250500.65002

E(Age) = E(Status) = 0.71452

各属性的信息增益如下:
Gain(Major) =0.97095-0.68966 = 0.28129
Gain(Status) =Gain(Age) =0.97095-0.71452 = 0.25643

比较后,由于Gain(Major)的值最大,按照最大信息增益原则,按照属性Major的不同取值进行第一次分割.
分割后,按照Major的不同取值,得到下面的3个表:

(1)Major = Arts

StatusAgeGpaCount
GraduateOldGood50
GraduateOldExcellent150
UndergraduateYoungGood150

考虑按属性Status分割后的样本的熵

StatuspiniI(pi,ni)
Graduate501500.81128
Undergraduate15000

E(Status) = 200/350*0.81128= 0.46359

考虑按属性Age分割后的样本的熵

StatuspiniI(pi,ni)
Old501500.81128
Young15000

E(Age) = E(Status)= 0.46359

由于E(Age) = E(Status),可按照属性Status的不同取值进行第二次分割。分割后,按照Status的不同取值,得到下面的2个表:

(1.1) Status =Graduate

AgeGpaCount
OldGood50
OldExcellent150

由于表中属性Age的取值没有变化,停止分割。按照多数投票原则,该分支可被判定为Gpa=Excellent。
(1.2)Status = Undergraduate

StatusAgeGpaCount
UndergraduateYoungGood150

在这种情形下,所有样本的Gpa属性值都相同.停止分割.
(2)Major= Appl_Science

StatusAgeGpaCount
UndergraduateYoungExcellent50

在这种情形下,所有样本的Gpa属性值都相同.停止分割.
(3)Major=Science

StatusAgeGpaCount
UndergraduateYoungGood100

在这种情形下,所有样本的Gpa属性值都相同.停止分割.
综合以上分析,有以下的判定树:
Major--------- Arts ----------Status-------Graduate ------Excellent
\ ______Undergraduate______Good
_______Appl_Science_______________________Excellent

__________Science______________________Good

小 tricks

计算信息熵的代码

import mathdef entropy(probabilities):total = sum(probabilities)probabilities= [p / total for p in probabilities]entropy = 0for p in probabilities:if p > 0:entropy -= p * math.log2(p)return entropyprobabilities = [100,100,150]#计算100 100 150的信息熵result = entropy(probabilities)
print("信息熵:", result)
http://www.qdjiajiao.com/news/2151.html

相关文章:

  • 公司做网站的费用怎么记账品牌推广方案思维导图
  • 称多县网站建设公司舆情分析报告范文
  • 东莞网站建设网站建立坚持
  • 辽阳网站推广预防电信网络诈骗
  • 股票网站开发拉新人拿奖励的app
  • wordpress 新建导航seo排名啥意思
  • seo做的最好的网站排行seo课程总结怎么写
  • 期刊类网站建设福州seo网站排名
  • 网站制作知名公司windows优化大师怎么用
  • 财政局网站建设自查报告百度seo关键词优化方案
  • wordpress评论提交特效福州seo外包公司
  • 做幼儿英语的教案网站杭州百家号优化
  • 兰州做网站的公司有哪些网络营销的优势与不足
  • 用旧手机做网站服务器怎样进行seo推广
  • 哪些门户网站可以做推广seo博客模板
  • 石家庄做网站需要多少钱新媒体营销推广公司
  • 党建网站建设 说明营销推广策划方案
  • 新网站怎么做seo优化wordpress免费建站
  • 网站常用的一种js幻灯片微信朋友圈软文大全
  • 手机网站 禁止缩放百度网盘网页登录入口
  • 网站开发案例分析企业品牌网站营销
  • 照片制作小视频seo课堂
  • 潍坊个人做网站的公司公司品牌推广方案范文
  • 国外设计网站的案例百度权重等级
  • 购物网站建设优缺点百度推广每年600元什么费用
  • 一个网站专门做摩托车成都关键词快速排名
  • 天津微网站网站优化检测
  • 网站截图怎么做今日头条热榜
  • 浙江台州做网站的公司2023最火的十大新闻
  • 烟台做网站的公司短视频矩阵seo系统源码