当前位置: 首页 > news >正文

网页游戏广告平台网站建设seo网站优化

网页游戏广告平台网站建设,seo网站优化,建设工程合同的内容,外贸做平台好还是自己建网站好目录 ChatGPT辅助细化知识增强!一、研究背景二、模型结构和代码任务流程一:启发式生成 三、数据集介绍三、性能展示实现过程运行过程训练过程 ChatGPT辅助细化知识增强! 多模态命名实体识别(MNER)最近引起了广泛关注。…

目录

  • ChatGPT辅助细化知识增强!
  • 一、研究背景
  • 二、模型结构和代码
      • 任务流程
      • 一:启发式生成
  • 三、数据集介绍
  • 三、性能展示
  • 实现过程
  • 运行过程
      • 训练过程

在这里插入图片描述

ChatGPT辅助细化知识增强!

在这里插入图片描述
多模态命名实体识别(MNER)最近引起了广泛关注。 用户在社交媒体上生成大量非结构化内容,主要由图像和文本组成。这些帖子具有与社交媒体相关的固有特征,包括简洁和非正式的写作风格。 这些独特的特征对传统的命名实体识别(NER)方法提出了挑战。

一、研究背景

社交媒体上的多模态命名实体识别(MNER)旨在通过结合基于图像的线索来增强文本实体预测。 现有的研究主要集中在最大限度地利用相关图像信息或结合显式知识库中的外部知识。

二、模型结构和代码

我的模型主要分为两个阶段。在生成辅助细化知识的阶段,我利用一组有限的预定义人工样本,并采用多模态相似示例感知模块来仔细选择相关实例。然后,将这些选定的示例合并到格式正确的提示中,从而增强为 ChatGPT 提供的启发式指导,以获取精炼的知识。

任务流程

  1. 任务公式化
    在这里插入图片描述

  2. 上下文学习
    在这里插入图片描述
    虽然GPT-4可以接受多模态信息输入,但这一功能仅处于内部测试阶段,尚未公开使用。此外,与ChatGPT相比,GPT-4的成本更高,API请求速度较慢。为了提高可复现性,我们仍然选择ChatGPT作为主要的研究对象,并且提供的这一范式也可以用于GPT-4。

为了使ChatGPT能够完成图文多模态任务,使用了先进的多模态预训练模型将图像转换为图像说明。最后将测试输入x设计为以下模板:
在这里插入图片描述

一:启发式生成

  1. 预定义的人工样本
    使ChatGPT在MNER任务中表现更好的关键在于选择合适的上下文示例。获取准确标注的上下文示例,这些示例能够精确反映数据集的标注风格并提供扩展辅助知识的途径,是一个显著的挑战。直接从原始数据集中获取这些示例并不可行。为了解决这个问题,我采用了随机抽样的方法,从训练集中选择一小部分样本进行人工标注。具体来说,对于Twitter-2017数据集,从训练集中随机抽取200个样本进行人工标注,而对于Twitter-2015数据集,数量为120。标注过程包括两个主要部分。第一部分是识别句子中的命名实体,第二部分是综合考虑图像和文本内容以及相关知识,提供全面的理由说明。在标注过程中遇到的多种情况中,标注者需要从人类的角度正确判断并解释样本。对于图像和文本相关的样本,我们直接说明图像中强调了文本中的哪些实体。对于图像和文本无关的样本,我们直接声明图像描述与文本无关。通过人工标注过程,强调了句子中的实体及其对应的类别。此外,引入了相关的辅助知识来支持这些判断。这个细致的标注过程为ChatGPT提供了指导,使其能够生成高度相关且有价值的回答。

  2. 多模态相似示例感知模块
    由于GPT的少样本学习能力在很大程度上取决于上下文示例的选择,我设计了多模态相似示例感知(MSEA)模块来选择合适的上下文示例。作为一个经典的多模态任务,MNER的预测依赖于文本和视觉信息的整合。因此,我们将文本和图像的融合特征作为评估相似示例的基本标准。而这种多模态融合特征可以从之前的多模态命名实体识别(MNER)模型中获得。将MNER数据集D和预定义的人工样本
    G

在这里插入图片描述

在以往的研究中,经过交叉注意力投射到高维潜在空间的融合特征H会直接输入到解码层,以进行结果预测。我们的模型选择HH作为相似示例的判断依据,因为在高维潜在空间中相近的示例更有可能具有相同的映射方式和实体类型。计算测试输入与每个预定义人工样本的融合特征H的余弦相似度。然后,选择前N个相似的预定义人工样本作为上下文示例,以启发ChatGPT生成辅助的精炼知识:
在这里插入图片描述
为了高效实现相似示例的感知,所有的多模态融合特征可以提前计算并存储。

三、数据集介绍

我们在两个公共 MNER 数据集上进行了实验:Twitter-2015和 Twitter-2017。这两个数据集都是从Twitter平台上收集的,包含了文本和图像的配对信息,主要用于研究在社交媒体短文本场景下的多模态命名实体识别和情感分析等任务。、

  1. Twitter-2015: 推文中的文本部分被手动标注了命名实体,并使用BIO2(Beginning- Inside-Outside)标注方案对命名实体进行分类。实体类别包括人物(Person)、组织(Organization)、地点(Location)等。3373/723/723(train/development/test)

三、性能展示

在这里插入图片描述

  • 本文所有资源均可在该地址处获取。

实现过程

在下载附件并准备好数据集并调试代码后,进行下面的步骤,附件已经调通并修改,可直接正常运行;
环境要求

python == 3.7
torch == 1.13.1
transformers == 4.30.2
modelscope == 1.7.1
  1. 我们的项目基于AdaSeq, AdaSeq项目基于Python版本>= 3.7和PyTorch版本>= 1.8。

  2. 下载

git clone https://github.com/modelscope/adaseq.git
cd adaseq
pip install -r requirements.txt -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
  1. 训练模型
python -m scripts.train -c examples/ER/twitter-15.yamlpython -m scripts.train -c examples/ER/twitter-17.yaml

运行过程

训练过程

在这里插入图片描述

http://www.qdjiajiao.com/news/11302.html

相关文章:

  • sae 网站备案百度问答平台
  • 包头北京网站建设进入百度网首页
  • 做旅游宣传哪个网站好自媒体平台有哪些
  • 周至做网站百度助手app免费下载
  • 五金外贸网站模板seo网站诊断价格
  • 水煮鱼 wordpress站长工具seo下载
  • 青岛网站建设方案书重庆森林壁纸
  • 什么网站能找到做展览的工人google chrome download
  • 搭建小程序seo和sem的联系
  • 南昌汉邦网站建设网络营销专业主要学什么
  • 医疗器械网站制作网站模板套用教程
  • 武汉 门户网站建设网络推广的工作好做吗
  • 如何知道网站是用什么语言做的seo搜索引擎优化课程
  • 合肥网站制作哪家好微信crm
  • 保山网站制作网店运营工资一般多少
  • 做网站主要步骤微信营销的方法
  • 商业性质网站建设步骤惠州seo优化服务
  • 网站开发技术人员如何申请域名
  • 坂田网站建设哪家好百度竞价关键词查询
  • 网站建设的3个基本原则交换友链平台
  • dw做动态网站怎么做网络营销推广
  • 如何恢复wordpress地址(url)太原搜索引擎优化招聘信息
  • 做学校网站素材图片素材长沙网红奶茶
  • 北京企业建站系统模板seo中文意思
  • 摄影网站设计素材今日百度搜索风云榜
  • 免费做网站刮刮卡如何制作自己的公司网站
  • wordpress主动推送代码写在哪里独立站seo
  • wordpress保存登陆重庆seo整站优化效果
  • 辽阳男科医院哪家最好系统优化工具
  • 中铝长城建设有限公司网站武威网站seo