当前位置: 首页 > news >正文

微信公众号内容编辑及排版西安专业seo

微信公众号内容编辑及排版,西安专业seo,app网站建设销售,功能型网站建设时间深度强化学习介绍、概念 强化学习介绍离散场景,使用行为价值方法连续场景,使用概率分布方法实时反馈连续场景:使用概率分布 行为价值方法 强化学习六要素设计奖励函数设计评论家策略学习与优化 算法路径深度 Q 网络 DQN演员-评论家算法&…

深度强化学习介绍、概念

    • 强化学习介绍
      • 离散场景,使用行为价值方法
      • 连续场景,使用概率分布方法
      • 实时反馈连续场景:使用概率分布 + 行为价值方法
    • 强化学习六要素
      • 设计奖励函数
      • 设计评论家
      • 策略学习与优化
    • 算法路径
      • 深度 Q 网络 DQN
      • 演员-评论家算法:多智能体强化学习核心框架
      • PPO 近端策略优化算法

强化学习介绍

机器学习是把带标签的数据训练模型,使得预测值尽可能接近真实值。

强化学习是通过和环境交互,奖励来训练模型,使得最后获取的奖励最大期望值。

在强化学习中,机器基于环境做出行为,正确的行为能够获得奖励。

以获得更多奖励为目标,实现机器与环境的最优互动。

如教狗子握手的时候,如果狗子正确握手,就能得到骨头奖励,不握手就没有。

如果咬了主人一口,还会受到惩罚。

长此以往,狗子为了得到更多骨头,就能学会握手这个技能。

强化学习和机器学习最大不同在于,环境未知。

因为环境未知,所以我们不能通过大量数据得到决策。

只能通过和环境的交互中,不断改进策略。

强化学习的发展历史:

  • 动态规划:学过数据结构与算法的人,都了解,是传统算法策略中最难的,千变万化。
  • 表格方法:时序差分、Q-Learning 、SARSA
  • 函数逼近:线性函数逼近、多项式函数逼近、基函数逼近
  • 深度强化学习:DQN、DDPG、AlphaStar、A2C、A3C、PPO

强化学习可分为离散、连续场景。

离散场景,使用行为价值方法

离散场景:机器行为的有限的,如动作类游戏。只有向上、向下、向左、向右这 4 个动作,移动也只能一格一格地走。

可以把每个状态下的所有行为列举出来,用评论家为每个行为打分,通过选择最高分的行为实现最优互动。

因为需要评估每个行为的价值,所以这种学习方法被称为基于行为价值的方法。

基于值的方法需要根据每个行为的价值进行打分,选出价值最高的行为。

由于要穷举出所有行为,因此它只适用于离散场景(动作类游戏),无法应对连续场景。

Q-Learning 和 DQN 算法,都属于基于值的强化学习方法。

优势在于,基于行为价值的方法能实时反馈。

可以根据每个行为的价值进行打分,这个分数就相当于每个行为的实时反馈。

连续场景,使用概率分布方法

连续场景:机器的行为是连贯的,如赛车的方向盘转动角度可以在一定区间内任意取值,角度之间可以无限分割。

还有基于行为概率的方法,无需根据每个行为的价值来打分,可以很好地胜任连续场景。

基于行为概率策略的方法并不需要考虑行为的价值,而是反应调整。

机器会在训练过程中随机抽取一些行为,与环境互动。如果行为获得了奖励,就会提高选择它的概率。以后遇到同样的状态时,有更高的概率再次做出这个行为。

相反,如果未获得奖励,或者受到了惩罚,就保持或者降低该行为的概率。

经过大量训练,最终会得出连续行为的概率分布。

基于这样的原理,一个行为能获得越多奖励,被选择的概率就越大,从而实现机器和环境的最优化互动。

PPO、演员-评论家 就是能处理连续场景的算法。

优势在于,基于策略的方法能应用连续场景上。但不能实时反馈。

实时反馈连续场景:使用概率分布 + 行为价值方法

机器在与环境互动时,难以得到实时反馈,往往要在整个回合结束后才能获得奖励。

如赢一盘棋是正向奖励,输一盘棋是负面奖励,但棋局中某一颗棋子的价值很难即时评估。

想要提高学习效率,就必须想办法提供实时反馈。

有没有办法可以在应对连续场景上的优点,和离散场景在实时反馈上的优点结合呢?

比如演员-评论家算法。

这个算法分成两半,一半是演员,另一半是评论家。

  • 演员:这一半基于概率分布,策略梯度算法。它有一个神经网络,可以根据行为的概率,选出行为。

  • 评论家:这一半基于行为价值,DQN 算法。它有一个神经网络,可以根据行为的价值进行打分。

将概率分布和行为价值的方法相结合:

  • 由基于概率分布的策略网络在连续场景中选出行为
  • 由基于行为价值的价值网络给行为提供实时反馈

概率分布网络就像写作业的学生,行为价值网络就像批改作业的老师。

二者结合,反复地写作业、改作业,对比方法,找出最好的方法。

 


强化学习六要素

强化学习六要素:环境、策略、状态、行为、奖励、评论家。

如在对弈的环境中,策略根据棋盘上的状态,做出落子行为,每盘棋的胜负获得奖励

模拟足够多棋局后,评论家就可以通过计算预测出每步棋对整盘棋的价值,为其打分。

在强化学习中,容易混淆的概念有:状态奖励函数、状态价值函数、动作奖励函数、动作价值函数。

设计奖励函数

奖励函数直接与环境相连,为算法提供即时的反馈。

奖励函数有两种类型:

  • 状态奖励函数:为智能体到达或处于特定状态时提供的即时奖励。如走迷宫,到达出口可能立即给予正奖励。

  • 动作奖励函数:为执行特定动作而提供的即时奖励。如下棋,吃掉对方的重要棋子可能立即获得奖励。

设计评论家

评论家(或价值函数)在强化学习中用于评估和指导策略的长期效益,基于累积奖励的概念。

  • 状态价值函数(V):评估处于某一特定状态的长期价值。这涉及对从该状态开始,未来可能获得的所有奖励的估计。
  • 动作价值函数(Q):评估在特定状态下执行特定动作的长期价值。这不仅包括即时奖励,还包括因该动作产生的后续状态和未来可能的奖励。

状态奖励函数、状态价值函数关注到达某状态的价值 - 前者是当下回报、后者是长期回报。

动作奖励函数、动作价值函数关注执行某动作的价值 - 前者是当下回报、后者是长期回报。

奖励函数提供即时反馈,价值函数预估长期收益。

策略学习与优化

通过与环境的交互,不断更新策略和价值函数来改进决策。

  • 学习:根据奖励和评论家的反馈,调整策略和价值函数。
  • 探索与利用:平衡 是尝试新动作(探索更好的动作)还是 利用已知的好动作(利用已知最好)。

算法路径

深度 Q 网络 DQN

记录于 — 【OpenAI Q* 超越人类的自主系统】DQN :Q-Learning + 深度神经网络

演员-评论家算法:多智能体强化学习核心框架

记录于 — 演员-评论家算法:多智能体强化学习核心框架

PPO 近端策略优化算法

记录于 —【ChatGPT 默认强化学习策略】PPO 近端策略优化算法

 


http://www.qdjiajiao.com/news/10554.html

相关文章:

  • 建设网络平台 请示旺道seo推广有用吗
  • 建设网站制作项目描述谷歌seo搜索引擎下载
  • 个人简历word可编辑免费上海免费关键词排名优化
  • b站推广网站mmmnba营销app
  • 化妆品网站网页设计网站怎么优化到首页
  • 网站开发专业培训91关键词排名
  • 华为邮箱登录入口windows优化大师好吗
  • 政府建设网站申请免费网站软件
  • wordpress能否解析万网的域名广东网站营销seo方案
  • 在线做ppt模板下载网站电商的运营模式有几种
  • 龙岗附近公司做网站建设多少钱今日油价92汽油价格
  • 网站怎么做抽奖seo引擎优化教程
  • 如何备份网站百度快快速排名
  • 手机电影网站怎样做电脑优化
  • 优秀的vi设计案例seo兼职论坛
  • 网站建设预招标永久免费低代码开发平台
  • 网站开发什么宁波seo费用
  • java网站开发源码百度助手下载
  • 长春免费建站模板网络营销推广策划书
  • 虚拟机怎么做网站空间泉州全网营销
  • 电子商务与网站建设搜索引擎成功案例分析
  • wordpress主题idowns下载aso优化师工作很赚钱吗
  • 怎样经营好一个网站今日足球赛事数据
  • 博物馆门户网站建设方案百度营销登录平台
  • 百合视频做爰视频网站网络推广外包
  • 怎么找网站开发公司小程序运营推广公司
  • ui设计经典案例搜索引擎优化案例
  • h5手机网站建设成都seo培训
  • 杭州 网站外包卖链接的网站
  • 做类似淘宝一样的网站有哪些提升网页优化排名